Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
Sci Rep ; 14(1): 9355, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654093

RESUMO

Thyroid hormones (TH) play critical roles during nervous system development and patients carrying coding variants of MCT8 (monocarboxylate transporter 8) or THRA (thyroid hormone receptor alpha) present a spectrum of neurological phenotypes resulting from perturbed local TH action during early brain development. Recently, human cerebral organoids (hCOs) emerged as powerful in vitro tools for disease modelling recapitulating key aspects of early human cortex development. To begin exploring prospects of this model for thyroid research, we performed a detailed characterization of the spatiotemporal expression of MCT8 and THRA in developing hCOs. Immunostaining showed MCT8 membrane expression in neuronal progenitor cell types including early neuroepithelial cells, radial glia cells (RGCs), intermediate progenitors and outer RGCs. In addition, we detected robust MCT8 protein expression in deep layer and upper layer neurons. Spatiotemporal SLC16A2 mRNA expression, detected by fluorescent in situ hybridization (FISH), was highly concordant with MCT8 protein expression across cortical cell layers. FISH detected THRA mRNA expression already in neuroepithelium before the onset of neurogenesis. THRA mRNA expression remained low in the ventricular zone, increased in the subventricular zone whereas strong THRA expression was observed in excitatory neurons. In combination with a robust up-regulation of known T3 response genes following T3 treatment, these observations show that hCOs provide a promising and experimentally tractable model to probe local TH action during human cortical neurogenesis and eventually to model the consequences of impaired TH function for early cortex development.


Assuntos
Córtex Cerebral , Transportadores de Ácidos Monocarboxílicos , Organoides , RNA Mensageiro , Simportadores , Receptores alfa dos Hormônios Tireóideos , Humanos , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Organoides/metabolismo , Córtex Cerebral/metabolismo , Simportadores/genética , Simportadores/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Primeiro Trimestre da Gravidez/metabolismo , Feminino , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/genética , Gravidez , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/genética , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia
2.
Endocrinology ; 165(5)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38527850

RESUMO

Thyroid hormones (THs) T4 and T3 are vital for development, growth, and metabolism. Thyroid dysfunction can also cause problems in fertility, suggesting involvement of THs in reproduction. In zebrafish, there exist 2 forms of TH receptor alpha gene (thraa and thrab). Disruption of these genes by CRISPR/Cas9 showed no reproductive irregularities in the thraa mutant; however, inactivation of the thrab gene resulted in female infertility. Although young female mutants (thrabm/m) showed normal ovarian development and folliculogenesis before sexual maturation, they failed to release eggs during oviposition after sexual maturation. This spawning failure was due to oviductal blockage at the genital papilla. The obstruction of the oviduct subsequently caused an accumulation of the eggs in the ovary, resulting in severe ovarian hypertrophy, abdominal distention, and disruption of folliculogenesis. Gene expression analysis showed expression of both TH receptors and estrogen receptors in the genital papilla, suggesting a direct TH action and potential interactions between thyroid and estrogen signaling pathways in controlling genital papilla development and function. In addition to their actions in the reproductive tracts, THs may also have direct effects in the ovary, as suggested by follicle atresia and cessation of folliculogenesis in the heterozygous mutant (thrab+/m), which was normal in all aspects of female reproduction in young and sexually mature fish but exhibited premature ovarian failure in aged females. In summary, this study provides substantial evidence for roles of THs in controlling the development and functions of both reproductive tract and ovary.


Assuntos
Infertilidade Feminina , Ovário , Peixe-Zebra , Animais , Feminino , Peixe-Zebra/genética , Infertilidade Feminina/genética , Ovário/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Mutação , Sistemas CRISPR-Cas , Reprodução/genética
3.
Liver Int ; 44(1): 125-138, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37872645

RESUMO

OBJECTIVE: Progressive hepatic fibrosis can be considered the final stage of chronic liver disease. Hepatic stellate cells (HSC) play a central role in liver fibrogenesis. Thyroid hormones (TH, e.g. thyroxine; T4 and triiodothyronine; T3) significantly affect development, growth, cell differentiation and metabolism through activation of TH receptor α and/or ß (TRα/ß). Here, we evaluated the influence of TH in hepatic fibrogenesis. DESIGN: Human liver tissue was obtained from explanted livers following transplantation. TRα-deficient (TRα-KO) and wild-type (WT) mice were fed a control or a profibrogenic methionine-choline deficient (MCD) diet. Liver tissue was assessed by qRT-PCR for fibrogenic gene expression. In vitro, HSC were treated with TGFß in the presence or absence of T3. HSC with stable TRα knockdown and TRα deficient mouse embryonic fibroblasts (MEF) were used to determine receptor-specific function. Activation of HSC and MEF was assessed using the wound healing assay, Western blotting, and qRT-PCR. RESULTS: TRα and TRß expression is downregulated in the liver during hepatic fibrogenesis in humans and mice. TRα represents the dominant isoform in HSC. In vitro, T3 blunted TGFß-induced expression of fibrogenic genes in HSC and abrogated wound healing by modulating TGFß signalling, which depended on TRα presence. In vivo, TRα-KO enhanced MCD diet-induced liver fibrogenesis. CONCLUSION: These observations indicate that TH action in non-parenchymal cells is highly relevant. The interaction of TRα with TH regulates the phenotype of HSC via the TGFß signalling pathway. Thus, the TH-TR axis may be a valuable target for future therapy of liver fibrosis.


Assuntos
Fibroblastos , Células Estreladas do Fígado , Animais , Camundongos , Humanos , Células Estreladas do Fígado/metabolismo , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/farmacologia , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Fator de Crescimento Transformador beta
4.
Thyroid ; 34(2): 243-251, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38149585

RESUMO

Background: The importance of thyroid hormones (THs) for peripheral body temperature regulation has been long recognized, as medical conditions such as hyper- and hypothyroidism lead to alterations in body temperature and energy metabolism. In the past decade, the brain actions of THs and their respective nuclear receptors, thyroid hormone receptor α1 (TRα1) and thyroid hormone receptor beta (TRß), coordinating body temperature regulation have moved into focus. However, the exact roles of the individual TR isoforms and their precise neuroanatomical substrates remain poorly understood. Methods: Here we used mice expressing a mutant TRα1 (TRα1+m) as well as TRß knockouts to study body temperature regulation using radiotelemetry in conscious and freely moving animals at different ambient temperatures, including their response to oral 3,3',5-triiodothyronine (T3) treatment. Subsequently, we tested the effects of a dominant-negative TRα1 on body temperature after adeno-associated virus (AAV)-mediated expression in the hypothalamus, a region known to be involved in thermoregulation. Results: While TRß seems to play a negligible role in body temperature regulation, TRα1+m mice had lower body temperature, which was surprisingly not entirely normalized at 30°C, where defects in facultative thermogenesis or tail heat loss are eliminated as confounding factors. Only oral T3 treatment fully normalized the body temperature profile of TRα1+m mice, suggesting that the mutant TRα1 confers an altered central temperature set point in these mice. When we tested this hypothesis more directly by expressing the dominant-negative TRα1 selectively in the hypothalamus via AAV transfection, we observed a similarly reduced body temperature at room temperature and 30°C. Conclusion: Our data suggest that TRα1 signaling in the hypothalamus is important for maintaining body temperature. However, further studies are needed to dissect the precise neuroanatomical substrates and the downstream pathways mediating this effect.


Assuntos
Hipotireoidismo , Receptores dos Hormônios Tireóideos , Camundongos , Animais , Receptores dos Hormônios Tireóideos/metabolismo , Temperatura Corporal , Tri-Iodotironina/farmacologia , Tri-Iodotironina/metabolismo , Hipotireoidismo/genética , Hipotireoidismo/metabolismo , Hormônios Tireóideos , Hipotálamo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo
5.
J Cell Biochem ; 124(12): 1948-1960, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992217

RESUMO

Thyroid hormones (TH) are important modulators of bone remodeling and thus, thyroid diseases, in particular hyperthyroidism, are able to compromise bone quality and fracture resistance. TH actions on bone are mediated by the thyroid hormone receptors (TR) TRα1 and TRß1, encoded by Thra and Thrb, respectively. Skeletal phenotypes of mice lacking Thra (Thra0/0 ) and Thrb (Thrb-/- ) are well-described and suggest that TRα1 is the predominant mediator of TH actions in bone. Considering that bone cells might be affected by systemic TH changes seen in these mutant mice, here we investigated the effects of TR knockout on osteoblasts exclusively at the cellular level. Primary osteoblasts obtained from Thra0/0 , Thrb-/- , and respective wildtype (WT) mice were analyzed regarding their differentiation potential, activity and TH responsiveness in vitro. Thra, but not Thrb knockout promoted differentiation and activity of early, mature and late osteoblasts as compared to respective WT cells. Interestingly, while mineralization capacity and expression of osteoblast marker genes and TH target gene Klf9 was increased by TH in WT and Thra-deficient osteoblasts, Thrb knockout mitigated the responsiveness of osteoblasts to short (48 h) and long term (10 d) TH treatment. Further, we found a low ratio of Rankl, a potent osteoclast stimulator, over osteoprotegerin, an osteoclast inhibitor, in Thrb-deficient osteoblasts and in line, supernatants obtained from Thrb-/- osteoblasts reduced numbers of primary osteoclasts in vitro. In accordance to the increased Rankl/Opg ratio in TH-treated WT osteoblasts only, supernatants from these cells, but not from TH-treated Thrb-/- osteoblasts increased the expression of Trap and Ctsk in osteoclasts, suggesting that osteoclasts are indirectly stimulated by TH via TRß1 in osteoblasts. In conclusion, our study shows that both Thra and Thrb differentially affect activity, differentiation and TH response of osteoblasts in vitro and emphasizes the importance of TRß1 to mediate TH actions in bone.


Assuntos
Receptores dos Hormônios Tireóideos , Receptores alfa dos Hormônios Tireóideos , Camundongos , Animais , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Biologia , Ligante RANK/metabolismo , Camundongos Knockout
6.
Nat Commun ; 14(1): 3312, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286550

RESUMO

Mutations in thyroid hormone receptor α1 (TRα1) cause Resistance to Thyroid Hormone α (RTHα), a disorder characterized by hypothyroidism in TRα1-expressing tissues including the heart. Surprisingly, we report that treatment of RTHα patients with thyroxine to overcome tissue hormone resistance does not elevate their heart rate. Cardiac telemetry in male, TRα1 mutant, mice indicates that such persistent bradycardia is caused by an intrinsic cardiac defect and not due to altered autonomic control. Transcriptomic analyses show preserved, thyroid hormone (T3)-dependent upregulation of pacemaker channels (Hcn2, Hcn4), but irreversibly reduced expression of several ion channel genes controlling heart rate. Exposure of TRα1 mutant male mice to higher maternal T3 concentrations in utero, restores altered expression and DNA methylation of ion channels, including Ryr2. Our findings indicate that target genes other than Hcn2 and Hcn4 mediate T3-induced tachycardia and suggest that treatment of RTHα patients with thyroxine in high dosage without concomitant tachycardia, is possible.


Assuntos
Síndrome da Resistência aos Hormônios Tireóideos , Tiroxina , Masculino , Animais , Camundongos , Tiroxina/uso terapêutico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Síndrome da Resistência aos Hormônios Tireóideos/genética , Hormônios Tireóideos , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Mutação , Taquicardia/genética
7.
Development ; 150(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36715020

RESUMO

Thyroid hormone and its receptor TRα1 play an important role in brain development. Several animal models have been used to investigate this function, including mice heterozygous for the TRα1R384C mutation, which confers receptor-mediated hypothyroidism. These mice display abnormalities in several autonomic functions, which was partially attributed to a developmental defect in hypothalamic parvalbumin neurons. However, whether other cell types in the hypothalamus are similarly affected remains unknown. Here, we used single-nucleus RNA sequencing to obtain an unbiased view on the importance of TRα1 for hypothalamic development and cellular diversity. Our data show that defective TRα1 signaling has surprisingly little effect on the development of hypothalamic neuronal populations, but it heavily affects hypothalamic oligodendrocytes. Using selective reactivation of the mutant TRα1 during specific developmental periods, we find that early postnatal thyroid hormone action seems to be crucial for proper hypothalamic oligodendrocyte maturation. Taken together, our findings underline the well-known importance of postnatal thyroid health for brain development and provide an unbiased roadmap for the identification of cellular targets of TRα1 action in mouse hypothalamic development.


Assuntos
RNA , Receptores alfa dos Hormônios Tireóideos , Camundongos , Animais , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos , Glândula Tireoide , Hipotálamo/metabolismo
8.
Thyroid ; 33(2): 239-250, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36103385

RESUMO

Background: Mutations of thyroid hormone receptor α (TRα1) result in resistance to thyroid hormone (RTHα), exhibiting symptoms of retarded growth, delayed bone maturation, anemia, and severe constipation. Using a mouse model of RTHα (Thra1PV/+ mouse), we aimed at understanding the molecular basis underlying the severe constipation observed in patients. Methods: The Thra1PV/+ mouse expresses a strong dominant negative mutant, PV, which has lost T3 binding and transcription activity. Thra1PV/+ mouse faithfully reproduces growth abnormalities and anemia as shown in RTHα patients and therefore is a valid model to examine causes of severe constipation in patients. We used histopathological analysis, confocal fluorescence imaging, transmission electron microscopy (TEM), and gene expression profiles to comprehensively analyze the colonic abnormalities of Thra1PV/+ mouse. Results: We found a significant increase in colonic transit time and decrease stool water content in Thra1PV/+ mouse, mimicking constipation as found in patients. Histopathological analysis showed expanded lamina propria filled with interstitium fluid between crypt columns, enlarged muscularis mucosa, and increased content of collagen in expanded submucosa. The TEM analysis revealed shorter muscle fibers with wider gap junctions between muscle cells, fewer caveolae, and hypoplastic interstitial cells of Cajal (ICC) in the rectal smooth muscles of Thra1PV/+ mice. These abnormal histological manifestations suggested defective intercellular transfer of small molecules, electrolytes, and signals for communication among muscles cells, validated by Lucifer Yellow transferring assays. Expression of key smooth muscle contractility regulators, such as calmodulin, myosin light-chain kinase, and phosphorylated myosin light chain, was markedly lower, and c-KIT signaling in ICC was attenuated, resulting in decreased contractility of the rectal smooth muscles of Thra1PV/+ mice. Collectively, these abnormal histopathological alterations and diminished contractility regulators led to the constipation exhibited in patients. Conclusions: This is the first demonstration that TRα1 mutants could act to cause abnormal rectum smooth muscle organization, defects in intercellular exchange of small molecules, and decreased expression of contractility regulators to weaken the contractility of rectal smooth muscles. These findings provide new insights into the molecular basis underlying constipation found in RTHα patients.


Assuntos
Anemia , Receptores alfa dos Hormônios Tireóideos , Humanos , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos , Mutação , Constipação Intestinal/genética
9.
Dev Growth Differ ; 65(1): 23-28, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36397722

RESUMO

Thyroid hormone (T3) is essential for normal development and metabolism, especially during postembryonic development, a period around birth in mammals when plasma T3 levels reach their peak. T3 functions through two T3 receptors, TRα and TRß. However, little is known about the tissue-specific functions of TRs during postembryonic development because of maternal influence and difficulty in manipulation of mammalian models. We have studied Xenopus tropicalis metamorphosis as a model for human postembryonic development. By using TRα knockout (Xtr·thratmshi ) tadpoles, we have previously shown that TRα is important for T3-dependent intestinal remodeling and hindlimb development but not tail resorption during metamorphosis. Here, we have identified genes bound by TR in premetamorphic wild-type and Xtr·thratmshi tails with or without T3 treatment by using chromatin immunoprecipitation-sequencing and compared them with those in the intestine and hindlimb. Compared to other organs, the tail has much fewer genes bound by TR or affected by TRα knockout. Bioinformatic analyses revealed that among the genes bound by TR in wild-type but not Xtr·thratmshi organs, fewer gene ontology (GO) terms or biological pathways related to metamorphosis were enriched in the tail compared to those in the intestine and hindlimb. This difference likely underlies the drastic effects of TRα knockout on the metamorphosis of the intestine and hindlimb but not the tail. Thus, TRα has tissue-specific roles in regulating T3-dependent anuran metamorphosis by directly targeting the pathways and GO terms important for metamorphosis.


Assuntos
Receptores alfa dos Hormônios Tireóideos , Proteínas de Xenopus , Xenopus , Animais , Humanos , Regulação da Expressão Gênica no Desenvolvimento/genética , Mamíferos/metabolismo , Metamorfose Biológica/genética , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Tri-Iodotironina/genética , Tri-Iodotironina/metabolismo , Tri-Iodotironina/farmacologia , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
10.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362133

RESUMO

Hypothyroidism has been shown to reduce infarct size in rats, but the underlying mechanisms are unclear. We used isolated pressure-constant perfused hearts of control, hypothyroid and hyperthyroid mice and measured infarct size, functional parameters and phosphorylation of key molecules in cardioprotective signaling with matched heart rate. Compared with controls, hypothyroidism was cardioprotective, while hyperthyroidism was detrimental with enlarged infarct size. Next, we asked how thyroid hormone receptor α (TRα) affects ischemia/reperfusion (IR) injury. Thus, canonical and noncanonical TRα signaling was investigated in the hearts of (i) mice lacking TRα (TRα0), (ii) with a mutation in TRα DNA-binding domain (TRαGS) and (iii) in hyperthyroid TRα0 (TRα0hyper) and TRαGS mice (TRαGShyper). TRα0 mouse hearts were protected against IR injury. Furthermore, infarct size was reduced in the hearts of TRαGS mice that lack canonical TRα signaling but maintain noncanonical TRα action. Hyperthyroidism did not increase infarct size in TRα0 and TRαGS mouse hearts. These cardioprotective effects were not associated with increased phosphorylation of key proteins of RISK, SAFE and eNOS pathways. In summary, chronic hypothyroidism and the lack of canonical TRα signaling are cardioprotective in IR injury and protection is not due to favorable changes in hemodynamics.


Assuntos
Hipertireoidismo , Hipotireoidismo , Traumatismo por Reperfusão , Ratos , Camundongos , Animais , Hipotireoidismo/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hipertireoidismo/metabolismo , Hemodinâmica , Traumatismo por Reperfusão/metabolismo , Infarto , Miocárdio/metabolismo
11.
Mol Oncol ; 16(22): 3975-3993, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36217307

RESUMO

The THRA gene, encoding the thyroid hormone nuclear receptor TRα1, is expressed in an increasing gradient at the bottom of intestinal crypts, overlapping with high Wnt and Notch activities. Importantly, THRA is upregulated in colorectal cancers, particularly in the high-Wnt molecular subtype. The basis of this specific and/or altered expression pattern has remained unknown. To define the mechanisms controlling THRA transcription and TRα1 expression, we used multiple in vitro and ex vivo approaches. Promoter analysis demonstrated that transcription factors important for crypt homeostasis and altered in colorectal cancers, such as transcription factor 7-like 2 (TCF7L2; Wnt pathway), recombining binding protein suppressor of hairless (RBPJ; Notch pathway), and homeobox protein CDX2 (epithelial cell identity), modulate THRA activity. Specifically, although TCF7L2 and CDX2 stimulated THRA, RBPJ induced its repression. In-depth analysis of the Wnt-dependent increase showed direct regulation of the THRA promoter in cells and of TRα1 expression in murine enteroids. Given our previous results on the control of the Wnt pathway by TRα1, our new results unveil a complex regulatory loop and synergy between these endocrine and epithelial-cell-intrinsic signals. Our work describes, for the first time, the regulation of the THRA gene in specific cell and tumor contexts.


Assuntos
Neoplasias Colorretais , Genes erbA , Humanos , Camundongos , Animais , Receptores dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Neoplasias Colorretais/genética
12.
Ecotoxicol Environ Saf ; 244: 114055, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36075122

RESUMO

Cadmium is a ubiquitous environmental pollutant, which can increase the risk of preeclampsia. This study was designed to determine the mechanism of cadmium exposure during pregnancy impaired placental angiogenesis that was associated with the occurrence of preeclampsia. The effects of cadmium exposure on placental thyroid hormone receptor signaling were explored. JEG3 cells were treated with CdCl2 (20 µM) and the Dio2 inhibitor, IOP (100 µM). Cadmium levels in maternal blood and placentae were increased in preeclampsia group. Placental angiogenesis of preeclampsia was decreased with decreased expression of PLGF and VEGF and increased expression of sFlt1. Meanwhile, the expression and nuclear translocation of thyroid hormone receptor α were decreased in preeclampsia placenta, as well as the expression of Dio2, but not the expression and nuclear translocation of thyroid hormone receptor ß. Furthermore, we found that cadmium exposure downregulated the expression of thyroid hormone receptor α and Dio2, but not the expression of thyroid hormone receptor ß in JEG3 cells. Also, we found that cadmium exposure decreased the expression of PLGF and VEGF and increased the expression of sFlt1 in JEG3 cells. IOP pretreatment decreased the expression of PLGF and increased the expression of sFlt1. In conclusion, our results elucidated that cadmium exposure would impair placental angiogenesis in preeclampsia through disturbing thyroid hormone receptor signaling.


Assuntos
Poluentes Ambientais , Pré-Eclâmpsia , Cádmio/metabolismo , Linhagem Celular Tumoral , Poluentes Ambientais/metabolismo , Feminino , Humanos , Neovascularização Patológica , Placenta/metabolismo , Fator de Crescimento Placentário/metabolismo , Fator de Crescimento Placentário/farmacologia , Pré-Eclâmpsia/induzido quimicamente , Pré-Eclâmpsia/metabolismo , Gravidez , Receptores dos Hormônios Tireóideos/metabolismo , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/farmacologia
13.
SAR QSAR Environ Res ; 33(8): 601-620, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35924759

RESUMO

Long-term exposure of exogenous compounds to thyroid hormone receptors (TRs) may lead to thyroid dysfunction. Quantitative structure-activity relationship (QSAR) is expected to predicting the binding affinity of compounds to TR. In this work, two comprehensive and large datasets for TRα and TRß were collected and investigated. Five machine learning models were established to predict the pIC50 of compounds. Meanwhile, the reliability of the models was ensured by a variety of evaluation parameters. The results showed that the support vector regression model exhibited the best robustness and external prediction ability (r2train = 0.77, r2test = 0.78 for TRα, r2train = 0.78, r2test = 0.80 for TRß). We have proposed an appropriate mechanism for explaining the TR binding affinity of a compound. The molecular volume, mass, and aromaticity affected the activity of TRα. Molecular weight, electrical properties and molecular hydrophilicity played a significant role in the binding affinity of compounds to TRß. We also characterized the application domain of the model. Finally, the obtained models were utilized to predict the TR binding affinities of 109 compounds from the list of endocrine disruptors. Therefore, this model is expected to be an effective tool for alerting the effects of exogenous compounds on the thyroid system.


Assuntos
Receptores dos Hormônios Tireóideos , Receptores alfa dos Hormônios Tireóideos , Algoritmos , Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade , Receptores dos Hormônios Tireóideos/química , Receptores dos Hormônios Tireóideos/metabolismo , Reprodutibilidade dos Testes , Receptores alfa dos Hormônios Tireóideos/química , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/química , Receptores beta dos Hormônios Tireóideos/metabolismo
14.
Andrologia ; 54(9): e14507, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35753757

RESUMO

Thyroid hormone (T3 ) acts on the testis via thyroid hormone receptor alpha 1 (TRα1), though the cellular localization of TRα1 in testis remains controversial. Studies on the presence of TRα1 in the epididymis are also lacking. The present study, therefore, examined the cellular localization and expression pattern of TRα1 in testis and epididymis of Parkes mice during postnatal development. Immunohistochemical results showed localization of TRα1 in interstitial and tubular compartments of the testis all through the development. On postnatal day (PND) 14, only leptotene spermatocytes showed TRα1-immunoreactivity in the testis, while at PND 28, 42, and 90, a diverse staining pattern for TRα1 was seen in almost all the seminiferous tubules mainly in leptotene spermatocytes, round and elongating spermatids, and in Leydig cells. Further, qRT-PCR and immunoblot analyses showed that TRα1 was expressed in the testis at the transcript as well as protein level throughout the postnatal development. TRα1 was also seen in principal cells of the epididymis, with maximal expression at PND 90. TRα1 was also present in cauda epididymidal spermatozoa of adult mice at PND 90. The results suggest that TRα1 is expressed in the testis and epididymis and that it may help to regulate the spermatogenic process and male fertility.


Assuntos
Epididimo , Testículo , Receptores alfa dos Hormônios Tireóideos/genética , Animais , Epididimo/crescimento & desenvolvimento , Epididimo/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Espermátides/metabolismo , Testículo/metabolismo , Receptores alfa dos Hormônios Tireóideos/metabolismo
15.
Front Endocrinol (Lausanne) ; 13: 773516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574030

RESUMO

Thyroid hormone is critical during the development of vertebrates and affects the function of many organs and tissues, especially the intestine. Triiodothyronine (T3) is the active form and can bind to thyroid hormone nuclear receptors (TRs) to play a vital role in the development of vertebrates. The resistance to thyroid hormone α, as seen in patients, has been mimicked by the ThraE403X mutation. To investigate the mechanisms underlying the effect of TRα1 on intestinal development, the present study employed proteomic analysis to identify differentially expressed proteins (DEPs) in the distal ileum between homozygous ThraE403X/E403X and wild-type Thra+/+ mice. A total of 1,189 DEPs were identified, including 603 upregulated and 586 downregulated proteins. Proteomic analysis revealed that the DEPs were highly enriched in the metabolic process, the developmental process, the transporter of the nutrients, and the intestinal immune system-related pathway. Of these DEPs, 20 proteins were validated by parallel reaction monitoring analysis. Our intestinal proteomic results provide promising candidates for future studies, as they suggest novel mechanisms by which TRα1 may influence intestinal development, such as the transport of intestinal nutrients and the establishment of innate and adaptive immune barriers of the intestine.


Assuntos
Síndrome da Resistência aos Hormônios Tireóideos , Animais , Modelos Animais de Doenças , Humanos , Intestinos , Camundongos , Mutação , Proteômica , Receptores dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Síndrome da Resistência aos Hormônios Tireóideos/genética , Hormônios Tireóideos , Tri-Iodotironina
16.
Exp Clin Endocrinol Diabetes ; 130(5): 296-302, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35255520

RESUMO

Thyroid hormone receptors are nuclear receptors that function as transcription factors and are regulated by thyroid hormones. To date, a number of variants and isoforms are known. This review focuses on the thyroid hormone receptor α (TRα), in particular TRα2, an isoform that arises from alternative splicing of the THRA mRNA transcript. Unlike the TRα1 isoform, which can bind T3, the TRα2 isoform lacks a ligand-binding domain but still binds to DNA thereby antagonizing the transcriptional activity of TRα1. Although a regulatory role has been proposed, the physiological function of this TRα2 antagonism is still unclear due to limited in vitro and mouse model data. Recently, the first patients with resistance to thyroid hormone due to mutations in THRA, the TRα encoding gene, affecting the antagonistic function of TRα2 were described, suggesting a significant role of this particular isoform in human physiology.


Assuntos
Processamento Alternativo , Receptores alfa dos Hormônios Tireóideos , Animais , Humanos , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo
17.
Commun Biol ; 5(1): 112, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132135

RESUMO

Thyroid hormone (T3) regulates adult intestine development through T3 receptors (TRs). It is difficult to study TR function during postembryonic intestinal maturation in mammals due to maternal influence. We chose intestinal remodeling during Xenopus tropicalis metamorphosis as a model to study TR function in adult organ development. By using ChIP (chromatin immunoprecipitation)-Seq, we identified over 3000 TR-bound genes in the intestine of premetamorphic wild type or TRα (the major TR expressed during premetamorphosis)-knockout tadpoles. Surprisingly, cell cycle-related GO (gene ontology) terms and biological pathways were highly enriched among TR target genes even though the first major event during intestinal metamorphosis is larval epithelial cell death, and TRα knockout drastically reduced this enrichment. More importantly, treatment of tadpoles with cell cycle inhibitors blocked T3-induced intestinal remodeling, especially larval epithelial cell death, suggesting that TRα-dependent activation of cell cycle is important for T3-induced apoptosis during intestinal remodeling.


Assuntos
Proteína Quinase CDC2/metabolismo , Morte Celular/fisiologia , Células Epiteliais/fisiologia , Mucosa Intestinal/citologia , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Proteína Quinase CDC2/genética , Morte Celular/genética , Deleção de Genes , Regulação da Expressão Gênica/fisiologia , Mucosa Intestinal/fisiologia , Larva/fisiologia , Receptores alfa dos Hormônios Tireóideos/genética , Hormônios Tireóideos/genética , Xenopus
18.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163147

RESUMO

Thyroid hormone (T3) receptors (TRs) mediate T3 effects on vertebrate development. We have studied Xenopus tropicalis metamorphosis as a model for postembryonic human development and demonstrated that TRα knockout induces precocious hind limb development. To reveal the molecular pathways regulated by TRα during limb development, we performed chromatin immunoprecipitation- and RNA-sequencing on the hind limb of premetamorphic wild type and TRα knockout tadpoles, and identified over 700 TR-bound genes upregulated by T3 treatment in wild type but not TRα knockout tadpoles. Interestingly, most of these genes were expressed at higher levels in the hind limb of premetamorphic TRα knockout tadpoles than stage-matched wild-type tadpoles, suggesting their derepression upon TRα knockout. Bioinformatic analyses revealed that these genes were highly enriched with cell cycle and Wingless/Integrated (Wnt) signaling-related genes. Furthermore, cell cycle and Wnt signaling pathways were also highly enriched among genes bound by TR in wild type but not TRα knockout hind limb. These findings suggest that direct binding of TRα to target genes related to cell cycle and Wnt pathways is important for limb development: first preventing precocious hind limb formation by repressing these pathways as unliganded TR before metamorphosis and later promoting hind limb development during metamorphosis by mediating T3 activation of these pathways.


Assuntos
Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Membro Posterior/embriologia , Metamorfose Biológica , Organogênese , Receptores alfa dos Hormônios Tireóideos/metabolismo , Via de Sinalização Wnt , Animais , Feminino , Masculino , Receptores alfa dos Hormônios Tireóideos/genética , Xenopus laevis
19.
Mol Cell Biol ; 42(2): e0036321, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34871063

RESUMO

Mutations in thyroid hormone receptor α (TRα), a ligand-inducible transcription factor, cause resistance to thyroid hormone α (RTHα). This disorder is characterized by tissue-specific hormone refractoriness and hypothyroidism due to the inhibition of target gene expression by mutant TRα-corepressor complexes. Using biophysical approaches, we show that RTHα-associated TRα mutants devoid of ligand-dependent transcription activation function unexpectedly retain the ability to bind thyroid hormone. Visualization of the ligand T3 within the crystal structure of a prototypic TRα mutant validates this notion. This finding prompted the synthesis of different thyroid hormone analogues, identifying a lead compound, ES08, which dissociates corepressor from mutant human TRα more efficaciously than T3. ES08 rescues developmental anomalies in a zebrafish model of RTHα and induces target gene expression in TRα mutation-containing cells from an RTHα patient more effectively than T3. Our observations provide proof of principle for developing synthetic ligands that can relieve transcriptional repression by the mutant TRα-corepressor complex for treatment of RTHα.


Assuntos
Proteínas Correpressoras/genética , Expressão Gênica/fisiologia , Predisposição Genética para Doença/genética , Hormônios Tireóideos/metabolismo , Animais , Humanos , Mutação/genética , Fenótipo , Receptores dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Tri-Iodotironina/genética
20.
Breast Cancer Res ; 23(1): 117, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930399

RESUMO

BACKGROUND: The active thyroid hormone triiodothyronine (T3) has been found to have an estrogen-like effect on breast cancer cells. Thyroid hormone receptor alpha-2 (THRα-2) acts as an antagonist for triiodothyronine (T3) signaling, and a low expression has been associated with unfavorable tumor characteristics and a higher mortality in breast cancer. However, the evidence are not conclusive. The present study evaluates tumor-specific THRα-2 expression in invasive breast cancers and its association with tumor characteristics and long-term mortality in a large population. METHOD: The Malmö Diet and Cancer Study (MDCS), a population-based cohort in Sweden that included 17,035 women from 1991 to 1996, was used. Women diagnosed with breast cancer during 1991-2010 were eligible for inclusion. A tissue micro array was constructed from stored tumor material and stained for THRα-2 using immunohistochemistry. Tumors from 654 patients were scored regarding the intensity and the fraction of cells stained, then dichotomized into low or high expression. Date and cause of death were collected up until 2018-12-31. Tumor- and patient characteristics were available from the MDCS. Missing data was imputed using chained equations. Logistic regression was used to calculate odds ratios (ORs) with 95% confidence intervals (CIs) for low vs high expression of THRα-2 related to specific tumor factors. Mortality was evaluated with Kaplan-Meier curves and Cox regression, rendering hazard ratios (HRs). Analyses were also stratified for estrogen receptor (ER) status. RESULTS: We found strong evidence of an association between low THRα-2 and unfavorable tumor characteristics, including estrogen receptor negativity: OR 4.04 (95% CI 2.28-7.15) and tumor size > 20-50 mm: OR 2.20 (95% CI 1.39-3.49). We found evidence of increased breast cancer-specific mortality for women with low THRα-2, HR 1.38 (95% CI 0.96-1.99), which remained after adjusting for age at diagnosis, HR 1.48 (95% CI 1.03-2.14), but not after adjusting for relevant prognostic factors, HR 0.98 (95% CI 0.66-1.45). THRα-2 expression in ER-negative tumors had an inverse correlation with overall mortality, HR 0.27 (95% CI 0.11-0.65). CONCLUSION: Low tumor-specific THRα-2 expression was in this study associated with prognostically unfavorable tumor characteristics and a higher mortality in breast cancer, but not independent from other prognostic factors.


Assuntos
Neoplasias da Mama , Receptores alfa dos Hormônios Tireóideos , Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Prognóstico , Modelos de Riscos Proporcionais , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Tri-Iodotironina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...